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Abstract

Background: Harmful cyanobacterial blooms present a global threat to human health. There is evidence suggesting

that cyanobacterial toxins can cause liver damage and cancer. However, because there is little epidemiologic research

on the effects of these toxins in humans, the excess risk of liver disease remains uncertain. The purpose of this study is

to estimate the spatial distribution of cyanobacterial blooms in the United States and to conduct a Bayesian statistical

analysis to test the hypothesis that contamination from cyanobacterial blooms is a potential risk factor for non-alcoholic

liver disease.

Methods: An ecological study design was employed, in which county-specific gender and age standardized mortality

rates (SMR) of non-alcoholic liver disease in the United States were computed between 1999 and 2010. Bloom coverage

maps were produced based on estimated phycocyanin levels from MERIS (Medium Resolution Imaging Spectrometer)

water color imageries from 08/01/2005 to 09/30/2005. A scan statistical tool was used to identify significant clusters of

death from non-alcoholic liver disease. A map of local indicator of spatial association (LISA) clusters and a Bayesian

spatial regression model were used to analyze the relationship between cyanobacterial bloom coverage and death

from non-alcoholic liver disease.

Results: Cyanobacterial blooms were found to be widely spread in the United States, including coastal areas;

62% of the counties (1949 out of 3109) showed signs of cyanobacterial blooms measured with MERIS.

Significant clusters of deaths attributable to non-alcoholic liver disease were identified in the coastal areas

impacted by cyanobacterial blooms. Bayesian regression analysis showed that bloom coverage was significantly

related to the risk of non-alcoholic liver disease death. The risk from non-alcoholic liver disease increased by

0.3% (95% CI, 0.1% to 0.5%) with each 1% increase in bloom coverage in the affected county after adjusting for

age, gender, educational level, and race.

Conclusions: At the population level, there is a statistically significant association between cyanobacterial

blooms and non-alcoholic liver disease in the contiguous United States. Remote sensing-based water monitoring

provides a useful tool for assessing health hazards, but additional studies are needed to establish a specific association

between cyanobacterial blooms and liver disease.

* Correspondence: lee.3598@osu.edu
1Environmental Science Graduate Program, The Ohio State University,

Columbus, OH, USA
2College of Public Health, Division of Environmental Health Sciences, The

Ohio State University, Columbus, OH, USA

Full list of author information is available at the end of the article

© 2015 Zhang et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Zhang et al. Environmental Health  (2015) 14:41 

DOI 10.1186/s12940-015-0026-7

mailto:lee.3598@osu.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Background
Liver disease constitutes a rapidly increasing global bur-

den to society and is an important cause of morbidity

and mortality in the United States, accounting for up to

2% of all deaths in the US [1]. Economically, approxi-

mately 1% of the total national health care expenditure

is spent on the care of patients with liver disease, which

appears to be on the rise in the US [1]. In the United

Kingdom, liver disease is the fifth most common cause

of death with increasing mortality rates [2]. Major risk

factors include hepatitis C and B viruses, heavy alcohol

consumption, and non-alcoholic liver disease [3]. Non-

alcoholic liver disease refers to a collection of liver diseases

in people who drink little or no alcohol. Non-alcoholic

liver disease is developing into a worldwide major health

problem [2] with age, gender, and obesity as potential risk

factors [4]. Accumulating evidence suggests that non-

alcoholic liver disease is rapidly becoming another im-

portant cause of hepatocellular carcinoma [5].

Cyanobacterial blooms have been reported to be a severe

problem in many water bodies and coastal areas around

the world. Recent research suggests that eutrophication,

coupled with climate change, promotes the worldwide

proliferation and expansion of cyanobacterial harmful

algal blooms [6]. These blooms can affect water quality,

producing a variety of toxins, such as microcystins,

nodularin, and anatoxin [7]. It has also been shown that

the neurotoxic amino acid, beta-methylamino alanine

(BMAA), is widely produced by cyanobacteria [8]. Hu-

man exposure to these toxins occurs through ingestion,

skin contact, and inhalation [9]. Despite the potential

health risks of cyanobacterial toxins, shown by animal

studies, a limited number of epidemiological studies

have been reported in humans. Microcystins usually

accumulate in vertebrate liver cells and are suggested

to cause liver damage [10], are the most common and

more thoroughly studied of the cyanobacterial toxins,

and have been identified as being hepatotoxins [11].

Microcystins are resistant to digestion in the gastro-

intestinal tract and are concentrated in the liver by an

active transport system [12]. Acute poisoning results in

destruction of the liver architecture, leading to blood

loss in the liver and hemorrhagic shock [13]. Chronic

exposure to these toxins causes an ongoing active liver

injury in mice [14] and there is experimental evidence

suggesting that microcystins can cause tumor promotion

[15]. Human exposure to microcystins occurs through: 1)

ingestion of microcystins from tap water due to cyanon-

bacterial blooms in the source water; 2) recreational

exposure through accidental ingestion or inhalation

and dermal contact; and 3) consumption of seafood

with accumulated microcystin. Algal cells and water-

borne toxins can be aerosolized by a bubble-bursting

process via wind-driven, white-capped waves [16].

Aerosol samples, taken during recreational activities on

bloom impacted lakes, have been found with detectable

levels of microcystins [17,18]. Although the levels of

aerosolized toxin were generally low, laboratory investiga-

tions have found that treatment of mice by the intranasal

route to microcystin-LR, the most toxic known variant of

microcystin, was an effective method for toxin exposure

[19]. In addition, there is evidence that liver disease has

been associated with the consumption of seafood, such as

fish, and water contaminated with microcystin [20]. The

relationship between cyanobacterial toxin and liver cancer

has been presumed from several epidemiological studies

in developing countries [21,22]. Deaths in Brazil have been

attributed to exposure to cyanobacterial hepatotoxins

(microcystins) via hemodialysis water [11] and chronic ex-

posure to microcystins has been identified as a risk factor

for childhood liver damage in China [23]. However, these

and other epidemiological studies do not conclusively

prove the etiological effect of cyantoxins, therefore, more

studies are warranted to fully understand the health

impact of these toxins.

In recent decades, the incidence and intensity of toxic

cyanobacterial blooms, as well as the associated eco-

nomic impact, have increased in the United States and

worldwide [6,24]. Even though cyanobacterial blooms

have become a serious problem for water resources in

the United States, no federal regulatory guidelines for

cyanobacteria or their toxins in drinking or recreational wa-

ters exist at this time. Some states such as Iowa, Minnesota,

Nebraska, Wisconsin, California, Oregon and Ohio have

established monitoring programs and routinely issue alerts

for harmful cyanobacterial blooms [25]. Many states and

other jurisdictions rely on WHO guidelines to manage

cyanobacterial blooms and toxins, whereas other states

have developted their own guidelines to support public

health decision-making, such as posting advisories or

closing access to contaminated water bodies [26]. Add-

itional legislation is recommended to promote research and

establish guidelines regarding cyanobacterial blooms [24].

Optical/Infrared remote sensing has been used to

monitor algal blooms, mostly by quantifying the concen-

tration of pigments in water bodies, such as chlorophyll-a

(chl-a) or phycocyanin [27]. However, as chl-a is common

to almost all phytoplankton, its retrieval from remotely

sensed data cannot be used to specifically determine the

abundance of cyanobacteria, especially where other groups

of eukaryotic algae co-occur. In contrast to chl-a, phyco-

cyanin is a pigment only found at high concentrations in

cyanobacterial blooms; therefore phycocyanin has been

shown to be a better indicator of cyanobacterial blooms

[28] and has been proposed as a tool for inferring elevated

microcystin levels [29]. Phycocyanin, other than chl-a and

carotenoid, is the most measureable pigment-protein

complex in Microcystis spp [30]. The Medium Resolution
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Imaging Spectrometer (MERIS) onboard the European

Space Agency ENVIronmental SATellite (ENVISAT) is

suitable for retrieving data on phycocyanin concentrations

because one of its 15 VIS_NIR (Visible-Near Infrared)

programmable spectral bands between 390 nm and

1040 nm, can be used to detect the phycocyanin absorption

peak that is near 620 nm. ENVISAT MERIS on a push-

broom detector generates an observation swath width of

1,150 km, and with an exact repeat-orbit of 35-days; the ef-

fective temporal sampling or Earth revisit time is 2–3 days

with a spatial resolution of ~300 m. Different types of

models, such as semi-empirical and single reflectance ratio,

have been developed to quantify phycocyanin levels [31,32].

A nested semi-empirical band ratio model [33], based on

MERIS, has been proven to statistically outperform other

MERIS-based algorithms [30]. A previous study, based on

Lake Erie beaches, also suggested that the semi-empirical

band ratio model performed well even with relatively low

phycocyanin levels [34]. Although MERIS ceased its oper-

ation on 9 May 2012, due to a sudden failure in communi-

cation in the ENVISAT satellite, it is still useful in terms of

retrieving historical bloom conditions over Lake Erie back

to 2002 when it was launched. The advantages of using sat-

ellite images for water quality parameters include: a) near

continuous spatial coverage of satellite imagery allowing for

estimates over large areas, and b) a record of archived

imagery giving an estimation of historical bloom conditions.

In other studies, the linkage between some satellite mea-

sured environmental factors and health risks showed a

potential for satellite imagery use [35]. However, satellite

imagery data have a limitation for near lake coastal regions

because of land contamination, and the spatial (pixel) reso-

lution of about 300 m.

The current study adopted an ecological method using

aggregate disease mortality data at the county level for

the contiguous US and MEIRS-derived data for cyano-

bacterial bloom coverage. Exploratory spatial analysis

methods and regression models were used to test the hy-

pothesis that non-alcoholic liver disease mortality rates

are related to satellite-observed algal bloom coverage.

The identification of cyanobacterial blooms as potential

risk factors for non-alcoholic liver disease will help to

address the prevention of this disease worldwide, includ-

ing the US, and assist in drawing attention to mitigating

cyanobacterial blooms throughout the world.

Methods
First, coverage maps of cyanobacterial blooms in the US

were produced using estimated phycocyanin levels from

MERIS images. Second, standardized county level non-

alcoholic liver disease mortality rates were computed

using the mortality data from Multiple Cause of Death

data. Subsequently, exploratory methods including spatial

clustering and local indicator of spatial association were

used to identify the linkage between cyaonobacterial

blooms and non-alcoholic liver disease. A Bayesian

regressional analysis was then used to quantitatively

measure the linkage between cyanobacterial bloom and

non-alcoholic liver disease mortality.

MERIS-observed bloom coverage data

All MERIS L1B full resolution images covering the con-

tiguous United States from 08/01/2005 to 9/30/2005

were retrieved from the National Aeronautics and

Space Administration (NASA)’s Goddard Space Flight

Center (GSFC) Ocean Color Science Team that are

available from http://oceancolor.gsfc.nasa.gov/. August

and September were chosen to match the common sea-

sonal peak (late summer or early fall) of cyanobacterial

blooms (http://www.cdc.gov/nceh/hsb/hab/default.htm).

After downloading the data, we used the Basic ERS &

Envisat (A) ATSR and MERIS (BEAM) VISAT toolbox

provided by ESA and Brockmann Consult and its supple-

mentary Regional Case-2 Water Processor [36] to further

refine the data from the US. In particular, we applied the

Case-2 Regional Processor (C2R) v1.5.2 to convert the top

of atmosphere (TOA) radiance (archived in the original

L1B data) to water leaving radiance (R_LW) above the sur-

face. Phycocyanin levels were estimated using the nested

semi-empirical band ratio model [33], which has proven

to be quite reliable [37]. The nested semi-empirical band

ratio model used MERIS bands 6, 7, 9, and 12. The ab-

sorption of phycocyanin, was calculated as below:

apc 620ð Þ ¼
B 705ð Þ

B 620ð Þ

� �

� aw 709ð Þ þ bbð Þ

� �

−bb−aw 620ð Þ

� �

� δ−1− ε� achl 665ð Þð Þ

In this model, the absobtion of chlorophyll a is cal-

culated as:

achl 665ð Þ ¼

�

B 705ð Þ

B 665ð Þ

� �

� aw 709ð Þ þ bbð Þ

� �

−bb−aw 665ð Þ

�

� γ−1

Where B(X) = water-leaving reflectance centered at X

nm [unit: dimensionless];

aw(665) = pure water absorption at 665 nm;

γ = 0.68, estimated chlorophyll-a absorption;

aw(709) = pure water absorption at 709 nm [unit: m−1];

bb = backscattering coefficient estimated by a single

band (Band 12 of MERIS in this study);

aw(620) = pure water absorption at 620 nm [unit: m−1];

δ = 0.82, correction factor; and

ɛ= 0.24

Maximum value composite technique was used to com-

bine all images into one large image with each pixel being

the highest value for that pixel location. This generates a
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cloud-free phycocyanin image for the spatial monitoring

of cyanobacterial blooms over water bodies in the con-

tiguous US.

Cyanobacteria blooms can present serious risks to human

and animal health due to their ability to produce toxins.

The World Health Organization (WHO) has provided

guideline levels of 1 and 20 μg/L of microcystin in drinking

and recreational water, respectively, in order to protect

public health [38]. The WHO guideline for recreational

exposure to cyanobacteria uses a three-tier approach

based on cyanobacterial density and chl-a level [39].

For protection of health, due to the irritative or aller-

genic effects of cyanobacterial toxins, a guideline level

of 20,000 cyanobacterial cells/ml (corresponding to

10 mg chl-a/liter under conditions of cyanobacterial

dominance) has been derived [39]. We chose the level

of 20,000 cyanobacterial cells/ml to be the threshold of

significant blooms. To transform this threshold to a

phycocyanin level, we used a linear relationship between

the log transformed parameters suggested in Ahn et al. [40]

and derived a level of 4.11 μg/L as equivalent to 20,000

cells/ml of cyanobacteria. The relationship between cyano-

bacterial cell abundance and phycocyanin is given as:

Log cyanobacteriað Þ ¼ 0:360 � log phycocyannð Þ þ 4:08

As a precaution, 4 μg/L phycocyanin was used as our

actual threshold for identifying water bodies affected by

cyanobacterial blooms that could have potential ad-

verse health effects on their neighborhoods. By over-

laying the county boundary polygon GIS layer from US

Census (http://www.census.gov/geo/maps-data/data/tiger-

cart-boundary.html), with the MERIS bloom coverage im-

agery with a spatial resolution of 260 m × 290 m, (http://

badc.nerc.ac.uk/data/meris/index-old.html), we calculated

the bloom coverage as the percentage of county area

covered by cyanobacterial blooms. The maximum value

composite and the zonal statistics were performed using

ArcGIS 10.0. Although the bloom coverage data are only

from 2005, they were intended to represent the bloom dis-

tributions in that decade since the development of eu-

trophication and algal blooms is gradual over years [41,42]

and studies show that eutrophication conditions in US es-

tuaries remain nearly the same over a decade [43]. How-

ever, in some areas the cyanobacterial bloom situation may

change rapidly due to eutrophication, mitigation or climate

factors. Using only 2005 data may underestimate the bloom

areas for the time period of 1999 to 2010 if the bloom situ-

ation increased exponentially during this time period.

Non-alcoholic liver disease data

Non-alcoholic liver disease data (ICD-10 codes: R74.0,

K71.0 – K77.8) [44] at the county level were extracted

for the period from 1999–2010 from the Multiple Cause

of Death data contained in the Centers for Disease

Control and Prevention (CDC) Wide-ranging Online

Data for Epidemiologic Research (WONDER) online

database (http://wonder.cdc.gov/mcd.html). Non-alcoholic

liver disease mortality data and population-at-risk were

retrieved by county, gender, and age (10 year intervals).

Aggregated, non-alcoholic liver disease mortality counts

and population-at-risk were also retrieved by gender and

age groups for the US to be used as the standard popula-

tion in calculating non-alcoholic liver disease mortality

rates, adjusting for effects of gender and age. Gender

and age adjusted rates were calculated using indirect

standardization for each county. Rate adjustment removes

the effects of gender and age from crude rates in order to

allow meaningful comparisons across populations with

different underlying race and age structures. Population

data from the US, during the study period, were used as

standard populations to obtain a standardized rate for

each county. Some other potential confounders, such as

educational level and race, were also adjusted by putting

the two factors as covariates in the regression model. The

percentage of people over 25 with a college degree or

above was used as an indicator of educational level and

the percentage of black people was used to adjust for race.

The percentage of people over 25 with a college degree

was from the US Census Bureau, 2006–2010 American

Community Survey and the percentage of black people

was retrieved from the Multiple Cause of Death data in

the CDC WONDER online database.

With the indirect standardization, the expected number

of non-alcoholic liver disease deaths was first calculated

for each county, which was determined by the number

of cases that would be expected if people in the study

population had the same mortality rate as people in the

standard population with the same age and gender.

Standardized mortality rates (SMRs) were calculated by

dividing the observed count by the expected value.

Death counts were “suppressed” when the data met the

criteria for confidentiality constraints. Rates were sup-

pressed for sub-national data representing zero to nine

(0–9) deaths. Thereafter, all counties with suppressed

data were not included for standardized rate calculation,

spatial analysis, and modeling. The number of counties in

the study area was 3109, with 195 counties being omitted

that had suppressed disease data. Consequently, the

number of data points (counties) for the statistical

modeling was 2914. The suppressed data may lead to a

bias of the model and the results needs to be inter-

preted with caution.

Testing the hypothesis that non-alcoholic liver disease is

related to bloom coverage

A flexible-shaped spatial scan statistic (FlexScan) was

performed to identify spatial clusters of non-alcoholic
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liver disease deaths. Tango and Takahashi [45] showed

that FlexScan detects irregular shaped clusters by using

a limited exhaustive search that would detect arbitrarily-

shaped clusters by aggregating their nearest circular

neighboring areas.

Exploratory spatial data analysis and Bayesian regression

models were used to assess the association between cyano-

bacterial blooms and the SMR of non-alcoholic liver dis-

ease using GeoDa software [46,47] and WinBUGS [48].

For exploratory spatial data analyses, a bivariate global

Moran’s I statistic and local indicator of spatial association

(LISA) were used. Bivariate global Moran’s I value

determines the overall strength and direction of the re-

lationship between the two variables, SMR and bloom

coverage in each county. LISA provides information

relating to the location of spatial clusters and outliers.

Local statistics are important because the magnitude of

spatial autocorrelation is not necessarily uniform over

the study area. The LISA analysis by GeoDa presented

a cluster map and identified clusters of High-High non-

alcoholic liver disease clusters (units of significantly

high disease mortality rates surrounded by significantly

high bloom coverage), Low-Low clusters (units of signifi-

cantly low disease mortality rates surrounded by signifi-

cantly low bloom coverage), High-Low or Low-High

outliers and insignificant areas (units where the rela-

tionship between disease mortality rates and bloom

coverage were not significant). Significance was tested

by comparison to a reference distribution obtained by

random permutations; 999 permutations were used to

determine a significance level for the differences be-

tween spatial units. Spatial contiguity was assessed as

Queen’s contiguity that defines spatial neighbors as

those areas with shared borders and vertices.

A negative binomial regression analysis was performed

using STATA 13.0 (Stata Corp., College Station, TX,

USA) to assess the relationship between non-alcoholic

liver disease deaths and bloom coverage, adjusting for

educational level and race. Negative binomial regression

was used instead of Poisson regression because of the

over-dispersed data. Thereafter, Bayesian negative bino-

mial models were fitted in WinBUGS [48] to examine the

association between non-alcoholic liver disease deaths and

bloom coverage using a conditional autoregressive (CAR)

process. Basically, spatial random effects were used at a

county level to account for spatial correlation present in

the data. Markov Chain Monte Carlo simulation (MCMC)

was applied to estimate model parameters [49]. After the

initial burn-in of 5,000 iterations, another 10,000 iterations

were used for the summaries of the posterior distribution

of the parameters. It was assumed that the observed

counts of non-alcoholic liver disease deaths (Yi) in county

i follow a negative binomial distribution with parameters

pi and r; i.e., Yi ~NB (pi, r), where pi relates to the average

number of cases via the formula (μi) = pit/r where r is the

over-dispersion parameter. We modeled the average num-

ber of deaths (μi) as a function of potential risk factors as

in the following:

Log μið Þ ¼ log Ei þ a þ Xi � βþ eiþ ϕi

where ui denotes expected number of deaths in county

I; α is the incidence rate when all covariates have zero

value; Xi is a vector of covariates in county I; β is a vec-

tor of the regression coefficients; ei is the unobserved

(i.e., uncorrelated) heterogeneity; and øi is the struc-

tured spatial random effect. County-specific random ef-

fects were modeled via a conditional autoregressive

(CAR) process, which implies that each øi, conditional

on its neighbors, follows a normal distribution with a

mean equal to the average of neighboring spatial effects,

and variance is inversely proportional to the number of

neighbors.

Results
Spatial distribution of cyanobacterial blooms in the

contiguous US

Based on the estimated phycocyanin concentrations

from MERIS, it was observed that cyanobacterial blooms

were widely spread in US water bodies, including lakes

and rivers (Figure 1). From the maximum value compos-

ite image, it is evident that a large part of Lake Erie was

covered by cyanobacterial bloom, mostly in the western

basin. Other parts of the Great Lakes, such as Saginaw

Bay, also showed significant bloom coverage. The largest

lakes in the contiguous US (i.e. Great Salt Lake, Lake of

the Woods, Lake Oahe, Lake Okeechobee, and Lake

Pontchartrain) were all afflicted with cyanobacterial

blooms. Coastal areas in Texas, Louisiana, North Carolina,

Virginia, Maryland and Delaware also had significant

cyanobacterial blooms. Based on our satellite estimations,

the occurrence of cyanobacterial blooms in US waters was

shown to be a common and serious problem. When the

data were aggregated at the county level (Figure 2), it was

observed that counties in coastal areas, as well as counties

in the mid-north areas, have substantial bloom coverage;

overall, 1,949 counties showed some bloom coverage,

which is 62% of all the counties assessed. Due to the limi-

tation of the spatial resolution of MERIS images, large

lakes and estuaries were better represented than relatively

small ponds. It is possible that the bloom situation was

underestimated in areas where most water bodies were

relatively small ponds.

Spatial clusters of non-alcoholic liver disease

In total, 773,828 non-alcoholic liver disease deaths in the

US from 1999 to 2010 were reported; a spatial variation

in non-alcoholic liver disease mortality was observed

Zhang et al. Environmental Health  (2015) 14:41 Page 5 of 11



(Figure 3). FlexScan identified 65 significant spatial clus-

ters of non-alcoholic liver disease (p < 0.01), which

included 432 counties. There were 26 significant clusters

along the coastal areas versus 39 significant clusters in

the inland areas. The most likely clusters were located

along the coastal area of Texas and included 14 counties

(p = 0.001). Counties in the clusters also showed higher

bloom coverage than counties from the non-clusters

according to the Wilcoxon signed-rank test (p < 0.001).

Exploratory spatial analysis on the relationship between

non-alcoholic liver disease and bloom coverage

The global Moran’s I value is 0.001 (p = 0.001), which

indicates an overall positive spatial correlation of non-

alcoholic liver disease SMR and bloom coverage. The

bivariate LISA cluster map is shown in Figure 4 (per-

mutations = 999, p <0.05), which shows local patterns

of spatial correlation at the county level between SMR and

average bloom coverage for its neighbors. Significant clus-

ters, as well as outliers, are color coded by type of spatial

autocorrelation. The High-High and Low-Low counties

represent spatial clusters, while the High-Low and Low-

High counties represent spatial outliers. The legend also

shows the number of counties in each category. The clus-

ters were observed in those places with significant positive

spatial relationships between the two variables, while the

outliers showed significant negative spatial relationships.

High-High areas shown in Figure 4 tend to have high

bloom coverage that is shown in Figure 2 as well as high

SMR of nonalcoholic liver disease SMR shown in Figure 3.

In contrast, High-Low areas shown in Figure 4 tend to

have high bloom coverage shown in Figure 2, but low

nonalcoholic liver disease SMR as shown in Figure 3.

There were significant clusters around coastal areas near

Texas.

Bayesian regression of non-alcoholic liver disease on

bloom coverage

Bayesian regression revealed a significant relationship

between non-alcoholic liver diseases and bloom coverage

(A) Southern part of the US (B) Midwestern part of the US

(C) Western part of the US (D) Northeastern part of the US

Figure 1 The spatial distribution of cyanobacteria blooms in different parts of the Contiguous US in 2005 as estimated by MERIS. (A) Southern

part of the US (B) Midwestern part of the US (C) Western part of the US (D) Northeastern part of the US.
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using a negative binomial model (Table 1), accounting

for the spatial correlated parttern of the data. According

to this model, risk for non-alcoholic liver disease death

increased 0.3% (95% Bayesian confidence interval, 0.1%

to 0.5%) for each 1% increase in bloom coverage of the

county; adjusting for age, gender, educational level, and

race. In the US, if the bloom coverage per county in-

creases by 1%, the estimated number of deaths per year

will increase by about 440, given the current non-

alcoholic liver disease death rate of 468 per 1,000,000

people per year. The results show that bloom coverage

was a significant factor influencing the rate of non-

alcoholic liver diseases.

Discussion
We estimated the overall spatial distribution of cyanobac-

terial blooms in the contiguous US using MERIS-based

phycocyanin levels. Harmful cyanobacterial blooms may

Figure 2 Bloom coverage area (percentage by county) in the US in 2005 as estimated by MERIS.

Figure 3 SMR of nonalcoholic liver disease of each county. The FlexScan identified significant clusters of death counts due to nonalcoholic liver

disease from 1999 to 2010.

Zhang et al. Environmental Health  (2015) 14:41 Page 7 of 11



be more common than previously estimated [50], as most

large lakes in the US and coastal areas showed cyanobac-

terial blooms indicating a serious environmental problem

in wide areas. In the contiguous US, 1,949 counties

showed at least some blooms in their water bodies (due to

the limitation of spatial resolution, small lakes could not

be assessed). For monitoring of algal blooms and their

toxins, it appears that remote sensing is a useful, quick,

and cheap method for evaluation of large areas and can

serve as a supplement to in situ monitoring of water bodies

with more extensive coverage. Currently, a number of states

regularly monitor cyanobacteria and cyanotoxins in water

bodies (e.g. New York State implemented the “Citizens

Statewide Lake Assessment Program” to monitor lake con-

ditions, including harmful algal blooms and Ohio regularly

monitors microcystin levels at recreational beaches) (http://

epa.ohio.gov/ddagw/HAB.aspx). In the US, the distribution

of mortality from non-alcoholic liver disease seems to vary

geographically, which could be the result of possible

environmental risk factors. In the contiguous US, we

have identified 65 spatial clusters with high mortality

rates for non-alcoholic liver disease; counties in the spatial

clusters also showed higher cyanobacterial bloom coverage

than counties in the non-clusters, indicating that environ-

mental risk is associated with cyanobacterial bloom and

could be contributing to the spatial clusters of non-

alcoholic liver disease. By Bayesian spatial regression, we

found a significant positive association between the rela-

tive risk of non-alcoholic liver disease mortality and

cyanobacterial bloom coverage after adjusting for gender,

age, race, and educational level; there was an excess risk of

non-alcoholic liver disease mortality in those areas with

high bloom coverage. The results show that spatial distri-

bution of cyanobacterial blooms, estimated by remote

sensing, was associated with non-alcoholic liver disease

mortality, strongly suggesting that cyanobacterial blooms

are an important risk factor.

Monitoring of phycocyanin data, obtained from remote

sensing, can be used as an indicator of cyanobacterial

blooms over a large area and can aid in assessing health

risks due to theseblooms; cyanobacterial blooms may pro-

duce toxins, such as microcystins that have been shown to

be liver toxins [23]. Living in bloom areas increases the

probability that persons will be exposed to excess micro-

cystin through inhalation, recreational exposure, or inges-

tion of contaminated food or water. Several cyanotoxins,

such as microcystins, Nodularins and Cylindrospermopsin

have shown to cause liver damage [51] and microcystins

can cause liver hemorrhage and chronic effects, such as

tumor promotion [51]. Microcystins have over 80 variants

and could be produced by Microcystis, Anabaena, Nostoc,

Oscillatoria, and Hapalosphon [9]. Nodularins are more

commonly isolated from the filamentous, planktonic

cyanobacterium, Nodularia spumigena are structurally

Figure 4 Bivariate LISA cluster map of nonalcoholic liver disease and cyanobacterial bloom coverage. The numbers of counties by the categories

are shown in the parentheses.

Table 1 Model estimates of the ajusted association

between cyanobacterial bloom coverage and nonalcholic

liver disease mortality in the Coutigious US by Baysian

negative binomial regression

Variable Risk Ratio
Estimate

95% credible
interval

County bloom coverage 1.003 (1.001,1.005)

Percentage of adults with higher
degree

0.385 (0.350, 0.422)

Percentage of black population
percentage

1.60 (1.46,1.78)
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similar to microcystins and can induce similar toxic effects

[9,51]. Cylindrospermopsin causes liver hemorrhage [52]

and can be produced by Aphanizomenon, Cylindrosper-

mopsin, Umezakia [9]. Cyanobacterial blooms have also

been implicated as a potential risk factor for amyotrophic

lateral sclerosis [53].

This current study shows a possible association be-

tween non-alcoholic liver disease and spatial distribution

of cyanobacterial blooms. Although such a study is gen-

erally suitable to show an association, it is not suitable

to prove or disprove an etiological cause for disease.

However, it can be used for hypothesis generation and

testing. Other studies are needed to investigate the level

of exposure through different routes that are sufficient

to cause disease.

The significant association shown herein, between

cyanobacterial blooms and non-alcoholic liver disease

provides some evidence for a potential health risk, but

more epidemiological research is warranted in order to

more accurately assess this risk. Exposures and possible

health effects (both acute and chronic) of cyanobacteria

and their toxins need to be evaluated more extensively

than under current conditions [54], especially now that

global warming will be more favorable for cyanobacterial

bloom-forming events. In developed countries, where

people are collecting water from surface sources to

drink, more actions should be taken to control bloom

formation as microcystins are highly stable in water and

resistant to boiling.

This study highlights several important points for

consideration. First, large scale ecological studies, suchas

that presented herein, are particularly useful under

conditions where disease data at individual levels are

not available and individual levels of exposure are diffi-

cult to obtain [55]. Second, the statistically significant

positive association between non-alcoholic liver disease

mortality rates and cyanobacterial coverages can be

taken as a probable indication of a potential health effect.

This association justifies the need for further studies to

investigate the biological mechanism(s) responsible for

the adverse effects of cyanobacterial toxins on human

health, especially liver damage and liver disease. Third,

the data show that satellites offer tremendous spatial

coverage and provide a great resource for regional en-

vironmental monitoring, pollution event warnings, and

environmental health studies. Satellite-estimated envir-

onmental factors could be used for studying potential

health risks as demonstrated in this study (association

between satellite bloom data and liver disease mortal-

ity). In the United States alone, toxic cyanobacterial

blooms result in substantial losses of $2.4-4.6 billion

annually in recreational, drinking, and agricultural

water resources [56]. The economic costs of toxic cya-

nobacteiral blooms would be understandably more, if

losses due to cyanobacterial blooms on health could be

reliably estimated.

There are some limitations related to this study: 1)

while effects were adjusted for gender, age, race, and

educational level, other potential confounding factors

were not included (e.g. obesity, smoking, Hepatitis B

infection, and diet); 2) the study used aggregated data

and therefore inferences based on the analysis cannot be

directly transferred to an individual level, ecological

studies, as presented here, i do not have the ability to

distinctively incorporate individual information, as satel-

lite measurements do not represent individual exposure

due to differences in diet, recreational activities, etc.; 3)

ENVISAT MERIS imageries have a spatial resolution of

approximately 300 m, which limits the ability to assess

small lakes and ponds, as well as data outages near

coastal regions, which could lead to some biases in the

estimation of exposure levels; 4) the spatial resolution

limitation may lead to an underestimation of the bloom

coverages in inland areas with more small ponds; 5) the

population-based ecological study does not consider

population dynamics during the study period (e.g. people

may have migrated during the study period) and the

residence at time of death may not be the location where

the disease was initiated. According to the US 2000 cen-

sus data, between March 1999 and March 2000, 43.4

million Americans moved and 39% of all moves were

cross county [57]. We might underestimate the effect of

bloom on nonalcoholic liver disease if impacted people

moved away from the bloom areas; and 6) we used one

year’s cyanobacterial bloom situation to represent a

12 year bloom situation. It is possible that the bloom

situation could change quickly in a few years in some lo-

cations; however, it is rare. We could have potentially

underestimated the bloom situation in areas where eu-

trophication increased very rapidly and miss some areas

with both high bloom coverages and high non-alcoholic

liver disease mortality. We may have underestimated the

effect of bloom if the missing high bloom areas (remotely

sensed) tend to have high nonalcoholic liver disease mor-

tality rates. Alternatively, we may have overestimated the

effect of bloom, if the missing high bloom areas (remotely

sensed) tend to have low nonalcoholic liver disease mor-

tality rates. Finally, the mismatch of the temporal window

of remote sensing images and disease data could lead to

potential bias in the results. In addition, coastal areas may

suffer from bloom contamination resulting from adjacent

waters, whose effects were not considered in this study

and which may lead to an underestimation of the effects

of bloom on non-alcoholic liver disease in coastal areas.

Although most coastal areas close to blooms, also showed

high bloom percentage, it is possible we may underesti-

mate the bloom level for the coastal areas by using bloom

coverage. Due to these study limitations, the association

Zhang et al. Environmental Health  (2015) 14:41 Page 9 of 11



between cyanobacterial bloom and non-alcoholic liver dis-

ease should be interpreted with caution. It is obvious that

more research is needed to confirm the effects of cyano-

bacterial blooms on liver disease as described herein.

Conclusions
This ecological study in the contiguous US, using satellite

data and data of multiple causes of death, found a signifi-

cant positive association between risk of non-alcoholic liver

disease mortality and cyanobacterial bloom coverage. We

identified clusters of non-alcoholic liver disease mortality

in clusters in those counties that also had higher bloom

coverage.

The evidence for excess non-alcoholic liver disease in

areas with high cyanobacterial bloom coverage suggests

that more attention should be centered around the public

health impact of harmful cyanobacterial blooms. Add-

itionally, remote sensing could be used to efficiently

monitor the distribution of algal blooms over a national

or global level and serve as a possible early warning

tool for public health alerts.
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